The normal values contained in the chart at the end of this manual (Table 1) for the various nerves have been determined for use in this laboratory and may vary from one laboratory to another. There are three parameters used in determining whether a conduction study is normal or abnormal. These parameters are amplitude of the MUAP, latency of the response, and conduction velocity.

The motor amplitude represents the summation of the individual muscle fiber action potentials within that muscle and correlates highly with the number of viable axons. The amplitude is measured in millivolts from the baseline to the negative peak of the response obtained from supramaximal nerve stimulation (Figure 1). Sensory amplitude (peak-to-peak) is measured in microvolts and also correlates with the number of viable axons (Figure 2).

The latency refers to the elapsed time between the start of the stimulus and the onset of the response. It represents the propagation of the impulse along the nerve, the transmission across the end-plate, and the depolarization of the muscle fibers. The latency is measured in milliseconds from the onset of the stimulus to the first negative deflection from the baseline in motor conduction (Figure 1) and to the peak of the response in sensory conduction (Figure 2).

The conduction velocity is obtained by stimulating the nerve at two different points along the nerve at least 10 cm apart. To calculate the conduction velocity, the difference between the latencies’ onset obtained at the two points is divided by the distance between the two points. It is calculated in meters per second.

\[
\text{Conduction velocity} = \frac{\text{Distance (cm)}}{\text{Latency 2 – Latency 1 (msec)}} \times 10
\]

There are a number of problems and pitfalls encountered in performing nerve conduction studies. The most common pitfall occurs from incorrect measurement of nerve length caused by one of the following:

1. Stretching the skin while measuring
2. Not following the course of the nerve
3. Using a non-standard limb position

Other common errors include the following:

1. Reversed polarity of the stimulating or recording electrodes
2. Active recording electrode not over the motor point of the muscle
3. Submaximal stimulation
4. Skin temperature below 32°C
5. Stimulus spread
Another problem encountered in performing nerve conduction studies is artifact. The most common types are:

1. Stimulus artifact commonly caused by one of the following:
 a. Inadequate grounding
 b. High impedance of recording electrode contact with skin
 c. Inadvertent electrical connection between stimulating electrodes and ground or recording electrodes
2. 60 Hz interference commonly caused by one of the following:
 a. Fluorescent light
 b. IVAC or other electrical equipment in contact with the patient
 c. Ungrounded wall outlet
3. Movement artifact caused by poor patient relaxation

When any of these problems are encountered the cause should be found and eliminated before proceeding with the nerve conduction study.

![Figure 1](image1.png)

Figure 1. Motor responses recorded distally (top) and proximally (bottom). S represents the stimulus, L1 (distal) and L2 (proximal) represent the latencies of the responses, and A represents the amplitude.

![Figure 2](image2.png)

Figure 2. Sensory response recorded distally. S represents the stimulus, L represents the latency of the response, and A represents the amplitude.
Diagram of the Course and Distribution of the Median Nerve. The muscles supplied are indicated in italics. In the hand the cutaneous branches are marked by stipple, as is also the field of cutaneous innervation (see inset). The nerve indicated by 1 is the palmar cutaneous of the median nerve; and those by 2, the palmar digital nerves. The corresponding areas of cutaneous innervations are indicated in the inset. In some individuals the region of innervations of the dorsal aspect of the fingers is somewhat more proximal than indicated in this drawing.
The active recording electrode is placed over the abductor pollicis brevis muscle as described below. A line is drawn across the palmar aspect of the wrist crease (1). A second line is drawn across the palmar surface of the first MCP joint at right angles to the axis of the first metacarpal (2). A third line connects the midpoint of the first two lines (3). It runs along the middle of the long axis of the thenar muscles. The midpoint of the third line is considered to be the center of the median innervated thenar muscles. The inactive electrode is placed over the thenar tendons on the lateral surface of the thumb. The ground is located over the dorsum of the wrist. The median nerve is stimulated approximately 2 cm proximal to the wrist crease between the flexor carpi radialis and palmaris longus tendons. The average distance is 7 cm from the cathodal stimulation site to the active recording electrode. The median nerve is stimulated proximally at the elbow between the biceps tendon and the medial epicondyle over the brachial pulse.
Median Sensory Conduction (Antidromic)

Antidromic conduction. The recording electrodes are placed 3-4 centimeters apart on the index figure on the proximal and distal phalanxes. A ground is placed over the palm of the hand and the distal stimulation site is over the median nerve at the wrist between the flexor carpi radialis and palmaris longus tendons 14 cm from the active recording electrode. Median sensory nerve conduction velocity can be determined by stimulating proximally at the elbow as with the median motor nerve conduction velocity.

Orthodromic conduction. The recording electrodes are placed 3-4 cm apart between the FCR and PL tendons, 14 cm away from the stimulating electrode. The stimulating electrodes are placed over the index finger or occasionally over the first or third digits, as described above. The ground is again placed on the palm.
The recording electrodes are placed on the volar surface of the wrist between the flexor carpi radialis and palmaris longus tendons, with the active electrode located 8 cm proximal to the cathode of the stimulator and the inactive electrode placed 3-4 cm proximal to the active electrode. The ground is placed across the palm between the stimulator and recording electrodes. The stimulator is placed so that the cathode is in the center of the palm over the crease formed by palmar abduction of the thumb, and the anode is distal to the cathode.
The Origin and Distribution of the Ulnar Nerve, the Medial Cutaneous Nerve of the Forearm and the Medial Cutaneous Nerve of the Arm. The muscles supplied are indicated in italics. The patterns of the different nerves are duplicated in the inset. The numbered nerves are the following: 1, palmar branch; 2, dorsal branch; 3, superficial terminal branch; 4, deep terminal branch. The fields of innervation of cutaneous branches 1, 2, and 3 are illustrated in the inset.
The active recording electrode is placed over the hypothenar muscles one-half way between the distal wrist crease across the ulnar border of the wrist and the distal traverse palmar crease across the ulnar border of the hand. The electrode is placed along this line over the highest prominence of the hypothenar muscle when viewed along its long axis. The inactive electrode is placed over the hypothenar tendon at the level of the M-P joint on the fifth digit. The ground strap is placed around the dorsum of the wrist. The ulnar nerve is stimulated distally 2 cm proximal to the wrist crease over the flexor carpi ulnaris tendon. The standard distance between the distal stimulation site and the recording electrode is 7 cm. The proximal stimulation site is over the ulnar nerve just proximal to the medial epicondyle at the elbow. Conduction velocity can also be determined by stimulating the ulnar nerve below the elbow and in the supraclavicular area (Erb’s point).
Ulnar Sensory Conduction (Antidromic)

Antidromic conduction. Sensory recording electrodes are placed on the proximal and distal phalanxes of the fifth digit 3-4 cm apart, the proximal electrode being the active recording electrode. The ulnar nerve is stimulated at the wrist 14 cm from the active recording electrode. Conduction velocities can be determined by stimulating the ulnar nerve at any proximal location such as the elbow, upper arm, or supraclavicular area (Erb’s point). The ground strap is located on the palm.

Orthodromic conduction. Stimulation is applied to the fifth digit using the recording electrode positions described above, the proximal electrode being the cathode. The ground is located on the palm and active recording electrode is located 14 cm from the cathode over the volar aspect of the wrist toward the flexor carpi ulnaris tendon. The inactive recording electrode is located 3-4 cm proximally.
The Course and Distribution of the Radial Nerve. The patterns of the cutaneous nerves are duplicated in the inset. The names of the various muscles supplied by the radial are in italics.
The recording electrodes are placed over the extensor digitorum communis or the extensor indicis muscle with the active electrode over the belly of the muscle and the reference electrode at least 3 cm distal to the active electrode over the distal muscle tendon. A ground is placed over the dorsum of the wrist. The nerve can be stimulated distally at the elbow, lateral to the biceps tendon beneath the brachial radialis muscle and proximally on the lateral aspect of the arm at the spiral groove. Nerve conduction velocity can also be determined by stimulation of the radial nerve in the supraclavicular area (Erb’s point). Proximal stimulation may be associated with an initial positive deflection of the CMAP because of activation of other muscles innervated by the radial nerve.
Radial Sensory Conduction

The active recording electrode is placed over the palpable portion of the superficial radial nerve. The nerve can be palpated over the extensor pollicis longus tendon. The inactive or reference electrode is placed 4 cm distally on the index finger. The ground is placed over the dorsum of the wrist. The nerve can be stimulated distally, two-thirds the distance down the forearm, over the dorsal edge of the radius. The stimulation site is approximately 10 cm from the active recording electrode. The nerve can be stimulated proximally at the elbow, lateral to the biceps tendon beneath the brachial radialis muscle.
The Course and Distribution of the Musculocutaneous Nerve. The names of the muscles supplied by this nerve are in italics. The cutaneous distribution is indicated in the inset.
The active recording electrode is placed over the mid-portion of the biceps brachii muscle. The inactive electrode is placed just proximal to the antecubital fossa over the biceps tendon. The ground is placed on the upper arm between the recording electrodes and the stimulator. The musculocutaneous nerve is stimulated at the axilla 13 cm proximal to the active recording electrode, and in the supraclavicular area (Erb’s point).
The Course and Distribution of the Superficial Peroneal Nerve. The names of the muscles innervated are in italics. The dotted pattern in the inset indicates the cutaneous field of the superficial peroneal nerve; the lined pattern that of a branch of the common peroneal nerve, the lateral cutaneous nerve of the calf.
Place the recording electrodes in between the 4th and 5th tendon near the EDB, you can use the bar or disc electrodes. Measure proximally 10 to 14 cm on the side of the leg. This is your stimsite and you might need to move around some. You would like to be pass the lateral malleolus but distal to where the calf gets big.
The active recording electrode is placed over the extensor digitorum brevis muscle approximately 1 cm distal to the bony prominence of the talus over the metatarsophalangeal joint. The reference electrode is placed over the lateral surface of the fifth digit. The ground electrode is placed over the dorsum of the ankle. The peroneal nerve can be stimulated distally over the anterior ankle, 2-5 cm lateral to the anterior tibial muscle, 5 cm proximal to the lateral malleolus. The distance between the distal stimulation site and the recording electrode is 9 cm. Occasionally, it will be necessary to stimulate the peroneal nerve posterior to the lateral malleolus near the sural nerve when there is an accessory deep peroneal nerve branch innervating the EDB muscle. The peroneal nerve is stimulated proximally at the knee over the palpable portion of the peroneal nerve in the lateral popliteal fossa 5 cm above the fibula head. Peroneal nerve conduction velocity can also be determined by stimulation 5 cm distal to the head of the fibula.
The Course and Distribution of the Sciatic, Tibial, Posterior Tibial and Plantar Nerves. A dotted line marks the transition between tibial and posterior tibial nerves. The cutaneous fields of the medial calcanean and medial plantar nerves are indicated in the inset by lines; the field of the sural nerve and its lateral calcanean branch by dots; and that of the lateral plantar nerve, by crosshatch. The names of the muscles supplied are italicized. The numbered branches of the plantar nerves are as follows: 1, flexor digitorum brevis; 2, abductor hallucis; 3, flexor hallucis brevis; 4, 1st lumbrical; 5, abductor digiti quinti; 6, flexor digitorum accessorius; 7, flexor digiti quinti brevis; 8, adductor hallucis; 9, interossei; 10, 2nd 3rd and 4th lumbricals. In order to simplify, the sural nerve is indicated as arising solely from the tibial nerve; actually it usually receives an anastomotic branch from the common peroneal nerve.
The active recording electrode is placed over the abductor hallucis muscle, 1 cm below and behind
the navicular tubercle, 8 cm from the stimulating electrodes. The inactive electrode is placed on
the muscle tendon at the level of the first digit. The ground is placed over the dorsum of the
ankle. The nerve is stimulated distally behind and above the medial malleolus and proximally at
the level of the knee in the lower border of the popliteal space near the popliteal artery.
With the patient in a prone position, a horizontal line is drawn along the crease behind the knee. The active recording electrode is placed over the posterior aspect of the lower leg, one-half the distance between the medial malleolus and the midpoint of the horizontal line. The inactive recording electrode is placed over the Achilles tendon. The posterior tibial nerve is stimulated orthodromically at the level of the knee in the lower border of the popliteal space. The ground is placed on the leg approximately half-way between the stimulator and the active recording electrode. The contralateral leg should be tested in the same manner as described above, taking care that the distance between the stimulating and recording electrodes is the same for the two legs.
The Course and Distribution of the Femoral Nerve. The names of the muscles supplied by this nerve are in italics. The patterns of the cutaneous nerves are duplicated in the insets. In the field of the saphenous nerve the broken line represents the boundary between the fields of the infrapatellar and terminal branches.
The active recording electrode is placed over the center of the vastus medialis muscle. The inactive electrode is placed at least 3-4 cm distal to the active electrode over the quadriceps tendon just proximal to the patella. The ground is placed on the leg half-way between the recording and stimulating electrodes. The site of stimulation is a point below the inguinal ligament and lateral to the femoral artery.
The active recording electrode is placed immediately behind the lateral malleolus with the inactive electrode 3-4 cm away on the lateral surface of the foot. The ground is placed on the posterior lateral surface of the ankle. The nerve is stimulated on the posterior surface of the lower leg 1-3 cm lateral to the mid-line at 7, 14, and 21 cm from the recording electrodes.
Facial Motor Conduction

The active recording electrode is placed on the orbicularis oculi muscle directly below the pupil with the patient looking straight ahead. The inactive recording electrode is placed on the bridge of the nose. The ground is placed on the forehead. The facial nerve is stimulated below the ear anterior to the mastoid process.
The active recording electrode is placed over the eighth intercostal space. The inactive recording electrode is placed 3-5 cm distally. The ground is placed approximately 3 cm above the nipple. The phrenic nerve is stimulated at the posterior border of the sternomastoid muscles at the level of the upper edge of the thyroid cartilage.
Two pairs of recording electrodes (infant ECG electrodes) are used. One pair is placed on the hand with the active electrode placed on the palm and the inactive electrode placed on the dorsum. The second pair is placed on the ipsilateral foot with the active electrode placed on the sole and the inactive electrode placed on the dorsum. The median nerve is stimulated orthodromically at the wrist on the contralateral side. The ground is placed on the forearm proximal to the stimulating electrode. The autonomic response is recorded from the hand and foot simultaneously.
Blink Reflex

Two pairs of recording electrodes are used. The active recording electrodes are placed on the orbicularis oculi muscle bilaterally. The inactive recording electrodes are placed on the lateral surfaces of the nose. The ground is placed on the chin. The supraorbital nerve is stimulated with the cathode placed over the respective foramen on one side. The reflex responses are recorded from the orbicularis muscle on both sides simultaneously.
Spinal Accessory Nerve

Place the recording electrode over the upper trapezius muscle and the reference over a bony prominence on the shoulder. Stimulate behind the sternocleidomastoid muscle. Place the ground in between.
Table 1
Normal Values UMMC

<table>
<thead>
<tr>
<th>Motor Conduction</th>
<th>Neonate</th>
<th>1 - 6 months</th>
<th>7 - 12 months (variable distance)</th>
<th>1 - 3 years (standard distance)</th>
<th>3 - 12 years (standard distance)</th>
<th>12 - 20 years (standard distance)</th>
<th>21 - 60 years (standard distance)</th>
<th>>60 years</th>
<th>Standard Adult Normal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>2.6 - 5.9</td>
<td>3.5 - 6.9</td>
<td>2.3 - 8.6</td>
<td>3.7 - 11.6</td>
<td>4 - 12</td>
<td>6 - 17</td>
<td>3 - 20</td>
<td>4 - 11</td>
<td>4 - 18</td>
</tr>
<tr>
<td>Distal Latency</td>
<td>2.0 - 2.9</td>
<td>1.6 - 2.2</td>
<td>1.5 - 2.8</td>
<td>1.8 - 2.8</td>
<td>1.7 - 3.0</td>
<td>2.1 - 4.1</td>
<td>2.3 - 4.3</td>
<td>2.8 - 4.5</td>
<td>2.4 - 4.4</td>
</tr>
<tr>
<td>Distance</td>
<td>1.9 - 3.0</td>
<td>2.1 - 4.1</td>
<td>1.9 - 4.3</td>
<td>2.2 - 4.3</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Ulnar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>1.6 - 7.0</td>
<td>2.5 - 7.4</td>
<td>3.2 - 10.0</td>
<td>2.6 - 9.7</td>
<td>5 - 18</td>
<td>6 - 18</td>
<td>5.7 - 22</td>
<td>5 - 15</td>
<td>6 - 16</td>
</tr>
<tr>
<td>Conduction Velocity</td>
<td>20 - 36</td>
<td>33 - 50</td>
<td>35 - 58</td>
<td>41 - 64</td>
<td>49 - 65</td>
<td>47 - 65</td>
<td>46 - 71</td>
<td>48 - 65</td>
<td>49 - 71</td>
</tr>
<tr>
<td>Distal Latency</td>
<td>1.3 - 2.9</td>
<td>1.1 - 3.2</td>
<td>0.8 - 2.2</td>
<td>1.1 - 2.2</td>
<td>1.3 - 2.4</td>
<td>1.9 - 3.4</td>
<td>1.9 - 3.8</td>
<td>2.2 - 3.8</td>
<td>1.8 - 3.5</td>
</tr>
<tr>
<td>Distance</td>
<td>1.0 - 3.4</td>
<td>1.7 - 4.4</td>
<td>1.9 - 4.6</td>
<td>2.4 - 4.8</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Peroneal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>1.8 - 4.0</td>
<td>1.6 - 8.0</td>
<td>2.3 - 6.0</td>
<td>1.7 - 6.5</td>
<td>2 - 12</td>
<td>4 - 13</td>
<td>2 - 11</td>
<td>1.5 - 9</td>
<td>2 - 12</td>
</tr>
<tr>
<td>Distal Latency</td>
<td>2.1 - 3.1</td>
<td>1.7 - 4.1</td>
<td>1.4 - 3.2</td>
<td>1.3 - 3.5</td>
<td>2.2 - 4.0</td>
<td>2.6 - 4.6</td>
<td>3.6 - 6.0</td>
<td>3.4 - 6.1</td>
<td>3.3 - 6.1</td>
</tr>
<tr>
<td>Distance</td>
<td>1.9 - 3.8</td>
<td>2.5 - 4.1</td>
<td>2.2 - 5.5</td>
<td>2.2 - 5.8</td>
<td>60</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Tibial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>3 - 25</td>
<td>3.5 - 22</td>
<td>3.0 - 30</td>
<td>4 - 13</td>
<td>2 - 11</td>
<td>1.5 - 9</td>
<td>2 - 12</td>
<td>3 - 20</td>
<td>3 - 26</td>
</tr>
<tr>
<td>Conduction Velocity</td>
<td>43 - 57</td>
<td>44 - 58</td>
<td>40 - 60</td>
<td>38 - 66</td>
<td>41 - 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal Latency</td>
<td>2.0 - 4.0</td>
<td>2.3 - 5.3</td>
<td>3.0 - 6.3</td>
<td>3.5 - 6.6</td>
<td>2.7 - 6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensory Conduction

Median									
--------	---------	--------------							
Amplitude	7 - 15	13 - 52	14 - 64	14 - 82	17 - 85	20 - 65	15 - 90	10 - 60	>20
Distal Latency	2.1 - 3.0	1.5 - 2.3	1.6 - 2.4	1.7 - 3.0	1.8 - 2.5	2.1 - 3.0	2.3 - 3.9	2.3 - 4.3	2.5 - 3.7
Distance	3.8 - 5.4	4.3 - 6.3	5.5 - 6.8	5.7 - 9.1	100	120	140	140	140

Ulnar									
-------	---------	--------------							
Amplitude	15 - 62	17 - 60	17 - 70	8 - 75	>10				
Conduction Velocity	53 - 79	56 - 73	49 - 77	49 - 76	53 - 73				
Distal Latency	1.7 - 2.4	2.1 - 2.9	2.0 - 3.4	2.5 - 4.1	2.4 - 3.5				
Distance	100	120	140	140	140				

Sural									
-------	---------	--------------							
Amplitude	8	9 - 10	10 - 28	8 - 30	8 - 47	8 - 40	5 - 50	4 - 35	6 - 47
Conduction Velocity	41	44 - 59	44 - 58	40 - 58	40 - 51	>40			
Distal Latency	3.3	1.7 - 2.3	1.7 - 2.5	1.4 - 2.8	1.7 - 2.4	2.1 - 2.9	3.0 - 4.1	3.3 - 5.1	3.2 - 4.2
Distance	5.5	5.8	5.8 - 7.6	4.5 - 8.6	80	100	140	140	140
Table 2

Electrodes

1. Stimulating Electrodes
 a. DISA
 Bipolar surface electrode consisting of two felt tips in a plastic coated stainless steel holder with attached cable.
 b. TECA
 Bipolar surface electrode consisting of two metal rods mounted in an insulated plastic holder with potentiometer intensity control and attached cable.

2. Recording Electrodes
 a. TECA
 Two 10 mm stainless steel discs with connecting wires and phone tip plugs
 Two stainless steel digital rings with connecting wires and phone tip plugs
 Two 10 mm stainless steel discs in rigid plastic mount with connecting wires and phone tip plugs
 b. NDM
 Infant ECG electrode with snap-on cable (used for autonomic nerve response)

3. Grounds
 a. DISA
 Large surface electrode encased in felt with a Velcro strap and attached cable
 b. TECA
 Thirty millimeter stainless steel disc with attached cable
NERVE CONDUCTION STUDIES:
PRINCIPLES, PROBLEMS, AND SOURCES OF ERROR

I. PRINCIPLES OF NERVE CONDUCTION STUDIES

A. STIMULATION

1. Electrodes
 a) Surface - silver plate, 0.5 to 0.1 cm in diameter
 b) Needle (EEG or monopolar)

2. Bipolar stimulation - both electrodes over nerve
 a) Cathode - negative pole
 (1) Attracts cations
 (2) Closest to recording site
 (3) Nerve depolarized
 b) Anode – positive pole
 (1) Attracts anions
 (2) Furthest from recording site
 (3) Nerve hyperpolarized
 c) Current
 (1) Flows from anode to cathode
 (2) Negative charges accumulate under cathode and depolarize nerve
 d) Stimulator
 (1) Cathode and anode usually 2 to 3 cm apart
(2) Types:
 (a) Constant voltage - current varies with skin, electrode impedance
 (b) Constant current - current adjusts to impedance; better for serial assessment of level of shock intensity as a measure of nerve excitability.

e) Stimulus
 (1) Intensity - 150 to 300 V (20 to 40 m A) for healthy nerve
 (2) Duration 0.05 to 1.0 msec (0.1 msec) for healthy nerve
 (3) Threshold - level required to achieve response, but not all axons activated
 (a) Maximal - all axons activated
 (b) Supramaximal - greater than maximal

3. Problems Encountered with Stimulation
 a) Cathode/Anode
 (1) Anodal block
 (a) Clearly label anode and cathode
 (b) Rotate anode off nerve
 (2) Avoid measurement from anode rather than cathode
 b) Stimulator
 (1) High skin impedance - grease, callous, edema
 (a) Clean, dry skin
 (b) Trim callous
 (c) Rub skin with high conductance cream
 (d) Use needle electrodes
 c) Stimulus
 (1) Submaximal stimulation - always use supramaximal
(2) Submaximal stimulation - if large fibers are always activated initially, can measure latency of fastest fibers, however, relationship of stimulator to these fibers and length of the axonal terminals may alter this measurement; may achieve better stimulus placement with needles and can use less stimulus intensity

(3) Avoid NCS in patients with CVP or Swan Ganz lines inserted directly in heart

(4) Cardiac pacemakers - only consideration if using a large stimulus near the implantation site

d) Stimulator Artifact

(1) If stimulator and recording electrode too close together and recording electrodes too far apart

(2) Overloading input

(3) Can reduce surface spread of stimulation

(4) Always place ground between stimulating and recording electrodes

B. RECORDING

1. Electrodes

a) Type

(1) Sensory nerves

(a) Surface

(b) Needle - increases amplitude, decreases noise

(2) Motor nerves

(a) Surface - advantage - records compound muscle action potential (CMAP) from all fibers innervated by nerve; onset = fastest fibers; amplitude = # of muscle fibers activated and the timing of their activation
(b) Needle - advantage - less interference from other muscles, so better CMAP take-off; good for proximal muscle that is difficult to isolate; disadvantage - only records small portion of CMAP

b) Placement
 (1) Should remain constant
 (2) Motor nerve - over endplate

2. Instrument settings
 a) Sensory
 (1) Filters: 20 Hz-2 kHz
 (2) Gain: 10-20 uV
 b) Motor
 (1) Filters: 2 Hz-10 kHz
 (2) Gain: 1-2 mV

3. Problems and Sources of Error
 a) Sensory recording
 (1) Signal within expected noise level
 (a) Averaging removes noise - degree of enhancement proportional to the square root of the # of trials, i.e. 4 trials gives double the response
 (2) Requires 100,000 x amplification which also amplified noise
 b) Motor recording
 (1) Moving fingers/contracting muscle - changes position of electrode over muscle belly - relaxation important
 (2) Initial positive deflection - electrode not over endplate
 (3) Avoid stretching skin
c) Sensory and motor recording

(1) High skin impedance - clean off oils, trim callous, no smeared electrode paste; if edema - use needles

(2) Excessive noise - poor ground, moisten ground; check for crossed wires, check gain and filter settings

(3) Measurement errors

(4) Temperature errors

II. MOTOR NERVE CONDUCTION

A. STIMULATION AND RECORDING

1. Electrodes
 a) Cathode closest to active (recording) electrode, G1
 b) G1 over endplate
 c) G2 on tendon or bone
 d) Use supramaximal stimulation = 20-30% > maximal stimulation threshold

B. CONDUCTION VELOCITY

1. Terminal/Distal Latency - Depends on:
 a) Integrity of nerve from point of stimulation to axon terminals
 b) Length of axon terminals
 c) Neuromuscular junction transmission
 d) Time for generation of muscle action potential

2. Calculation
 a) Measure distance between cathodes
 b) \[\text{CV} = \frac{\text{Distance (mm)}}{\text{Latency (prox)} - \text{Latency (dist)}} \]
 c) Conduction velocity is measured over main nerve trunk
3. CMAP
 a) Latency - measured at take-off; corresponds to fastest nerve fibers
 b) Amplitude - baseline to negative peak; corresponds to number of muscle fibers activated

C. SOURCES OF ERROR

1. Proximal and distal waveforms differ
 a) Temporal dispersion - conduction block
 b) Submaximal stimulus or variable stimulus point-to-point
 c) Anomalous innervation

2. Small initial negative peak if high gain used - may arise from nerve; can ignore

3. Small positive dip
 a) G1 not over endplate
 b) Volume conduction from other muscles
 (1) Avoid stimulating more than one nerve
 (2) Consider anomalous innervation

D. TYPES OF ABNORMALITIES - STIMULATING PROXIMAL TO LESION

1. Decreased amplitude, normal or slightly increased latency
 a) Neurapraxia or axonal loss - before onset of distal degeneration (3-4 days)

2. Amplitude normal, slow conduction velocity
 a) Segmental demyelination
 b) Temporal dispersion - will see decreased amplitude
3. Absent response
 a) Neurotmesis
 b) At 4-7 days - cannot tell if lesion neurapraxic or complete transection

III. SENSORY NERVE CONDUCTION

A. STIMULATION AND RECORDING
 1. Orthodromic - more difficult to differentiate motor and sensory response especially if diseased nerve
 2. Antidromic - larger response; easier to see

B. AMPLITUDE, DURATION
 1. Measure baseline to negative peak
 2. Latency to peak
 3. Amplitude a measure of the density of innervation

C. CONDUCTION VELOCITY
 1. Can calculate based on distal latency alone since NMJ time not a consideration
 2. Amplitude drop of as much as 50% can occur with proximal stimulation - dispersion; both fast and slow fibers; SCV not necessarily a measure of fastest fibers
 3. Use take-offs for CV calculation

D. SOURCES OF ERROR
 1. Improper stimulation or recording sites
 2. Stimulus too high

IV. VARIABILITY IN MEASUREMENT

A. TEMPERATURE
 1. CV increases 0.7 – 2.4 m/s or 5% per degree between 29-48°C – sensory and motor nerves
2. Latency from the wrist to muscle increases 0.3 ms per degree for median and ulnar nerves

3. Amplitude increases if cool - temperature slows recovery period; preferential slowing of fast fibers

4. Duration increases

5. If skin is ≥ 34°C, muscle is approximately 37°C

6. The technician is not a thermometer

B. AGE

1. CV in full term infants is 50% than in adults; normal by age 3-5 years

2. Age 70-88: motor CV 15% slower than 18-25 (Buchthal)

3. Age > 60: motor CV 10% slower than < age 60 (Wagman)

4. Median sensory amplitude age 70-88 = 1/3 the sensory amplitude of age 18-25 (Buchthal)

C. VARIATION IN NERVES AND SEGMENTS

1. Both proximal and distal conduction velocities are slower in the lower extremities than upper extremities

2. Inverse relationship between height and CV

3. Median CV = ulnar CV; tibial CV < peroneal CV

4. CV > proximally than distally
 a) Decreasing axon diameter distally
 b) Colder distally
 c) Shorter internodal distance

5. F-wave stimulation - latency, cord-to-elbow = latency, elbow-to-hand

6. Other
 a) Few studies suggest differences due to gender?
 b) Hand dominance correlates with faster CV?
 c) Circadian rhythm?
D. GENERAL TROUBLESHOOTING QUESTIONS

1. No response
 a) Is stimulator delivering a stimulus? Check on technician.
 b) Check anatomical electrode placement
 c) Check skin and electrodes - lotion, saline, electrode paste - too much, too little
 d) Make sure you are using a supramaximal stimulus
 e) Check gain and filters

2. Muscle contraction but no response
 a) Is pre-amplifier on?
 b) Are electrodes plugged into pre-amplifier? Into correct pre-amplifier?
 c) Are connections between patient and EMG machine connected?
 d) Clean skin
 e) Increase sweep speed

3. Stimulus artifact
 a) Ground not functioning
 b) Ground near recording electrodes
 c) Clean skin

REFERENCES

Note: Usual composition shown. Prefixed plexus has large C4 contribution but lacks T1. Postfixed plexus lacks C5 but has T2 contribution.
To determine which sensory nerve conduction studies (S-NCS) are helpful in detecting supraclavicular axon loss brachial plexopathies, we selected 53 cases (of 417 reviewed) in whom complicating factors were absent and which, by needle electrode examination findings, involved only a single "truncal" element (upper, middle, or lower) of the brachial plexus. Extensive S-NCS included: median, recording thumb (Med-D1), index (Med-D2), and middle fingers (Med-D3); ulnar, recording fifth finger (Uln-D5); dorsal ulnar cutaneous, recording dorsum of the hand (DUC); radial, recording base of thumb; and both medial and lateral antebrachial cutaneous (MABC, LABC), recording forearm. Except for the median sensory fibers, the "cord" elements traversed by the sensory fibers assessed during the S-NCS listed above are anatomically defined (i.e., the sensory fibers enter the brachial plexus at only one cord). In regard to the median sensory fibers, however, there are two possible pathways through the infraclavicular plexus: (1) the lateral cord and/or (2) the medial cord. Because the lower trunk is only accessible via the medial cord, any sensory fibers found to be traversing the lower trunk had to first traverse the medial cord. Similarly, those traversing the upper and middle trunks must first be a component of the lateral cord. The frequency that the various S-NCS responses were abnormal (unelicitable, below laboratory normal value, or ≤50% of the contralateral response) for a given brachial plexus element lesion was as follows: (1) upper trunk (UT): 25 of 26 Med-D1, 25 of 26 LABC, 15 of 26 radial, 5 of 26 Med-D2, 2 of 26 Med-D3; (2) middle trunk (MT): 1 of 1 Med-D3; (3) lower trunk (LT): 25 of 26 Uln-D5, 22 of 23 DUC, 11 of 17 MABC, 3 of 23 Med-D3. With lower trunk brachial plexopathies, both "routine" (Uln-D5) and "uncommon" (DUC; MABC) S-NCS are abnormal. With upper trunk brachial plexopathies, in contrast, only the "uncommon" S-NCS (Med-D1; LABC) are consistently affected. The "routine" median S-NCS recording digit 2 (Med-D2) is far less reliable than the median S-NCS recording digit 1 (Med-D1) in detecting upper trunk axon loss brachial plexopathies. Additionally, the various pathways traversed by the fibers contributing to the individual S-NCS responses can be predicted, an important point when the full extent of a brachial plexus lesion is sought. © 1995 John Wiley & Sons, Inc.

Key words: brachial • plexus • sensory • nerve • conduction

MUSCLE & NERVE 18:879–889 1995

THE UTILITY OF VARIOUS SENSORY NERVE CONDUCTION RESPONSES IN ASSESSING BRACHIAL PLEXOPATHIES

MARK A. FERRANTE, MD, and ASA J. WILBOURN, MD

INTRODUCTION

Dawson4 introduced sensory nerve conduction studies (S-NCS) in 1956. He stimulated the digital nerves of the second and fifth fingers, while recording over the median and ulnar nerves at the wrist. In 1958, using these same orthodromic techniques, Gilliatt and Sears5 showed that both the median and the ulnar sensory nerve action potentials (SNAPs) were unelicitable in the presence of diffuse axon loss brachial plexus (BP) lesions, while only the ulnar SNAP was affected by lower trunk...
(LT) brachial plexopathies. Thus, they demonstrated that upper extremity S-NCS can be independently affected by focal brachial plexopathies. Nonetheless, most current textbooks and journal articles concerning electrodiagnostic evaluation of the BP discuss upper extremity S-NCS primarily in regard to differentiating preganglionic (usually avulsion injuries) from postganglionic lesions, noting that the SNAP amplitudes are affected only by postganglionic axon loss. They also address electrodiagnostic evaluation of the terminal branch "elements" of the BP. Few sources, however, describe an approach for evaluating the various "internal" BP elements traversed by the sensory fibers studied during the various routine and uncommon S-NCS. Because none of the sensory fibers studied distally traverses all elements of the BP, it is not possible for a single S-NCS to assess the entire BP. Consequently, the individual S-NCS have the potential for providing localization with focal brachial plexopathies.

While some authors have mentioned only the routine S-NCS (i.e., median, stimulating/recording the index finger; ulnar, stimulating/recording the fifth finger) in regard to BP assessment, others have discussed the importance of performing uncommon S-NCS for optimal assessment. Still, there have been no series published to validate these claims, nor any attempt to identify the trunk elements evaluated by the routine and uncommon S-NCS. For this reason, we designed this study to determine the BP trunk element traversed by the sensory fibers studied during the various S-NCS, so that the latter can be logically utilized in the assessment of focal axon loss brachial plexopathies. Because lesions involving the terminal elements (i.e., branches) and preganglionic elements (i.e., roots) are well discussed in other sources, we did not seek to identify them. Moreover, the cord elements traversed by the sensory fibers of the S-NCS assessed distally are anatomically defined (e.g., the LABC nerve derives from the lateral cord, the radial nerve from the posterior cord, and the ulnar and MABC nerves from the medial cord). The exception to this is the median nerve, which is composed of fibers from both the lateral and medial cords. Still, because the upper and middle trunks can contain median sensory fibers derived only from the lateral cord, and similarly the lower trunk can receive sensory fibers solely from the medial cord, whenever sensory fibers are shown to traverse a particular "trunk" element, the "cord" element they traverse is also defined.

METHODS

We retrospectively evaluated all electrodiagnostic studies performed at the Cleveland Clinic Foundation over the past 11 years that had been coded as a brachial plexopathy (n = 417). Our inclusion criterion was that each BP lesion be confined to a single "trunk" element (upper, middle, or lower), based on needle electrode examination (NEE), using established muscle domains (Table 1). Our exclusion criteria were: (1) evidence of any BP abnormalities not confined to a single trunk element (as noted); (2) any other neuromuscular lesion(s) (e.g., coexisting carpal tunnel syndrome) in the affected limb; (3) plexopathies studied less than 21 days from weakness onset; and (4) any S-NCS abnormalities involving the contralateral limb; this latter exclusion criterion was applied because the SNAP responses were judged abnormal not only by their absolute values, but also by comparison to the SNAPs of the contralateral unaffected limb. Thus, changes in the contralateral S-NCS could obscure a S-NCS abnormality of the studied limb.

In our study, NEE of a muscle was considered abnormal if it showed evidence of acute and/or chronic motor axon loss (MAL). Acute MAL is reflected by the presence of fibrillation potentials and a decreased recruitment pattern, whereas chronic MAL is reflected by changes in the external configuration (e.g., increased duration and sometimes amplitude) and a decreased recruitment pattern. Generally, the average duration for a given muscle must be increased by at least 50% before we consider it to be abnormal. Utilizing the NEE of these 417 brachial plexopathies, we were able to identify 53 lesions confined to a single

Table 1. The muscle domains of the trunk elements.

<table>
<thead>
<tr>
<th>Upper trunk</th>
<th>Middle trunk</th>
<th>Lower trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supraspinatus</td>
<td>Pronator teres</td>
<td>Flex pollicis brevis</td>
</tr>
<tr>
<td>Infraspinatus</td>
<td>Flex carpi radialis</td>
<td>Abd pollicis brevis</td>
</tr>
<tr>
<td>Biceps</td>
<td>Triceps</td>
<td>Ext carpi ulnaris</td>
</tr>
<tr>
<td>Deltoid</td>
<td>Anconeus</td>
<td>Ext digit communis</td>
</tr>
<tr>
<td>Teres minor</td>
<td>Ext carpi radialis</td>
<td>Ext pollicis brevis</td>
</tr>
<tr>
<td>Triceps</td>
<td>Ext carpi ulnaris</td>
<td>Ext indicis proprius</td>
</tr>
<tr>
<td>Pronator teres</td>
<td>Ext digit communis</td>
<td>Flex carpi ulnaris</td>
</tr>
<tr>
<td>Flex carpi radialis</td>
<td>Ext indicis proprius</td>
<td>Flex digit prof-4.5</td>
</tr>
<tr>
<td>Brachioradialis</td>
<td></td>
<td>Abd digit minimi</td>
</tr>
<tr>
<td>Ext carpi radialis</td>
<td></td>
<td>First dorsal interos</td>
</tr>
</tbody>
</table>

This table is modified from several published myotome charts (Refs. 12, 15, 16, 23, 26, 33).
combined UT and MT lesions, for example, were rejected from this study because more than a single trunk element was affected: combined UT and MT lesions, for example, were far more common than UT lesions alone, as were combined MT and LT lesions compared to LT lesions in isolation. Also, it is well known that MT lesions rarely occur in isolation, a point again confirmed by our study (discussed later). Thus, our rigid exclusion criteria necessitated rejection of approximately 87% of the brachial plexopathies reviewed.

Of the 53 EMG examinations accepted into this study, all had had the following “routine” S-NCS performed: median sensory response, recording digit 2 (Med-D2); ulnar sensory response, recording digit 5 (Uln-D5); and radial sensory response, recording dorsum of the hand (radial). Where applicable, additional “uncommon” S-NCS were performed (all antidromically), using published techniques. These included median sensory responses, recording digit 1 (Med-D1) and digit 3 (Med-D3); dorsal ulnar cutaneous sensory response, recording dorsum of the hand (DUC); and medial and lateral antebrachial cutaneous sensory responses (MABC, LABC), recording forearm.

All the S-NCS responses performed in these 53 patients with unilateral BP lesions were evaluated. Peak-to-peak amplitudes were measured from the trough of the first positive component to the peak of the aftercoming negative component. In the event that an initial positivity was not apparent, then the response amplitude was measured from the baseline to the peak of the initial negative component. In our EMG laboratory we utilize malleable lead grounds (approximately 20 x 2.5 cm) to help reduce shock artifact. In the event that shock artifact is noted, we utilize standard approaches to eliminate it. In all of our 53 cases, shock artifact was not a significant problem. We never found it necessary to resort to such techniques as electronic averaging. Abnormalities were identified when the SNAPs were: (1) unelicitable; (2) lower in amplitude than the previously established age-related normal laboratory control values; or (3) \(\leq 50\% \) lower in amplitude than that obtained from the corresponding study on the contralateral limb. It was then determined what effect each BP lesion had on the various S-NCS performed. The borderline amplitude decrements (\(> 40\% \), but \(< 50\% \)) identified in Table 2 were considered as “normals” for all calculations.

RESULTS

Twenty-six UT lesions were identified using the NEE criteria outlined above. Both the LABC response and the Med-D1 responses were abnormal in 25 of 26 (96%) of these. The single “normal” Med-D1 response was borderline low in amplitude, when compared with the contralateral limb study. The radial response was abnormal in 15 of 26 (58%). The Med-D2 response was abnormal in only 5 of 26 (19%), and was of borderline low amplitude in an additional 3 instances. The Med-D3 response was abnormal in 2 of 26 (8%). The Uln-D5 response was normal in all. These results are listed in Table 2.

Only one MT lesion met the study criteria. The Med-D3 response was abnormal with it. The LABC, Med-D1, Med-D2, radial, and Uln-D5 responses were normal (in this single study), although the Med-2 response was borderline low (47% amplitude decrement when compared to the contralateral side). These results are also listed in Table 2.

Twenty-six LT lesions were identified. The Med-D3 response was abnormal in 3 of 23 (13%); of the 20 “normal” responses, 2 had borderline amplitude decrements (44%; 47%). Both the Uln-D5 and the DUC responses were abnormal in 96% (Uln-D5: 25 of 26; DUC: 22 of 23); the remaining Uln-D5 response showed a decrement of 43% when compared to the contralateral side, and was thus borderline low in amplitude. The MABC response was abnormal in 11 of 17 (65%) (see Discussion below). The following responses were within normal limits: LABC (\(n = 14 \)), Med-D1 (\(n = 20 \)), Med-D2 (\(n = 26 \)), and radial (\(n = 26 \)). These results are also listed in Table 2.

DISCUSSION

As pointed out by Stewart, knowing the origins of branches arising from the BP, and the muscles

<table>
<thead>
<tr>
<th>Abnormal response</th>
<th>UT</th>
<th>MT</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABC</td>
<td>25/26</td>
<td>0/1</td>
<td>0/14</td>
</tr>
<tr>
<td>Med-D1</td>
<td>25/26</td>
<td>0/1</td>
<td>0/20</td>
</tr>
<tr>
<td>Med-D2</td>
<td>5/26</td>
<td>0/1</td>
<td>0/26</td>
</tr>
<tr>
<td>Med-D3</td>
<td>2/26</td>
<td>1/1</td>
<td>3/23</td>
</tr>
<tr>
<td>Radial</td>
<td>15/26</td>
<td>0/1</td>
<td>0/26</td>
</tr>
<tr>
<td>Uln-D5</td>
<td>0/26</td>
<td>0/1</td>
<td>25/26</td>
</tr>
<tr>
<td>DUC</td>
<td>22/23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MABC</td>
<td>11/17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The “normal” response revealed a 46% amplitude decrement in comparison to the other side.

†Two of the “normal” responses revealed borderline amplitude decrements (44%, 47%).
and cutaneous areas they supply, is important in the accurate localization of brachial plexopathies. Although S-NCS have been known to be useful in the electrodiagnostic evaluation of brachial plexopathies for over 35 years, the potential for their anatomy to be applied electrodiagnostically has been underutilized. Axon loss lesions at the plexus level separate the sensory cell bodies in the dorsal root ganglia (DRG) from their peripheral projections (axons), causing the latter to undergo Wallerian degeneration. When these degenerated nerve fibers are a component of a sensory nerve assessed during S-NCS, they do not contribute to the SNAP and, consequently, its amplitude is decreased. With rather severe lesions the S-NCS responses become unelicitable. Because the sensory fibers assessed by a single S-NCS do not traverse all the BP elements, there is no single S-NCS capable of assessing all the BP elements simultaneously. Consequently, knowing the pathway through the plexus traversed by the sensory fibers assessed during S-NCS can be very helpful in BP evaluation.

Each of the 53 cases included in this study was selected because it had NEE abnormalities restricted to muscles within the domain of just a single trunk element, as determined by various standard myotome charts. The NEE abnormalities included fibrillation potentials, frequently accompanied by a neurogenic motor unit potential (MUP) firing pattern (decreased recruitment), and sometimes by chronic neurogenic MUP changes. The degree of acute versus chronic MAL is a reflection of the temporal relationship between the onset of symptoms and the time the NEE was performed. As stated previously, all studies were performed at least 3 weeks after the onset of weakness. Given that the S-NCS responses are much more susceptible to pathologic insult than are the M-NCS responses, the acuteness or chronicity of the NEE findings does not adversely influence our interpretation.

Table 1 shows the muscle domains for the 3 trunk elements of the BP. It was derived from previously published studies dealing with the muscle domains of various root (i.e., anterior primary rami, APR) elements. Except for the relatively few peripheral nerves arising from the APR level of the BP (e.g., dorsal scapular nerve, long thoracic nerve), the trunk elements of the BP are direct continuations of the APR (i.e., the UT is formed by the fusion of the C5 and C6 APR, the MT is a direct continuation of the C7 APR, and the LT is formed by the fusion of the C8 and T1 APR). Thus, the muscle domain of a given trunk element is equal to the muscle domain(s) of its contributing APR, minus the muscle domain(s) of the peripheral nerves (if any) given off at the APR level of the BP. The overlap in our table, like the overlap in the studies from which it was derived, reflects the fact that essentially all of the muscles sampled on NEE receive multisegmental innervation. Thus, in order to accurately localize axon loss BP lesions, one must be familiar with the muscle domains of all the BP elements. For example, if we noted NEE abnormalities in the supraspinatus, infraspinatus, deltoid, biceps, brachial radiadis, and pronator teres muscles, the lesion was considered an UT brachial plexopathy. All of the above muscles receive motor axons from the C5 and C6 segments of the spinal cord, except for the pronator teres, which receives motor axons from the C6 and C7 segments. Thus, motor axons innervating the pronator teres traverse both the UT and the MT. Given that no abnormalities were noted in any other muscles of the MT muscle domain, we considered it unlikely that the lesion was affecting both the UT and the MT; rather, we assumed it involved the UT in isolation and the pronator teres contained fibrillation potentials because of its C6/UT innervation. A second, more complex example of this reasoning process, is that of the single MT lesion identified in this study. Note in Table 1 that 4 of the muscles listed in the MT muscle domain are also listed in the UT muscle domain, and that 3 of them also appear in the LT muscle domain. Because it lies between 2 other trunk elements, its muscles are for the most part “shared.” It becomes important, therefore, to sample the “unshared” muscles of both the upper and lower trunks. If they are all spared, and only if they are all spared, then the possibility that the lesion is a mixed trunk element lesion is quite remote, since it is very unlikely that involvement of a second trunk element would affect only those motor nerve fascicles innervating muscles found in both domains, while sparing the “unshared” muscles. Our MT case went to surgery, based in part on our electrodiagnostic examination, and was found to have a fibrotic process of unknown etiology involving solely the MT. The overlap seen in the MT muscle domain is analogous to that seen in the C7 APR muscle domain (as expected given that it is a direct continuation of that root), and we are unaware of any electromyographers who consider it impossible to make a diagnosis of a C7 radiculopathy. Thus, the rarity of an isolated MT lesion is not due to the complexity involved in making the electrodiagnosis. Although the muscle domains of
the BP elements overlap, the “shared” muscles are important in evaluating the full extent of a brachial plexopathy, so we elected to utilize them in our search for focal lesions. Moreover, we were concerned that excluding such lesions would result in a selection bias toward more partial (i.e., less severe) BP element lesions. Less severe lesions would be more likely to spare the sensory fibers studied by the various S-NCS and could adversely affect our results.

We are well aware of the limitations of this approach. First, variations in BP anatomy (both vertical and horizontal variations) could conceivably have an affect on both the NEE and the NCS findings. Perhaps the most discussed BP anomaly is that of pre- and post-fixation. It is interesting to note, however, that with these vertical anomalies, while the root contribution of the trunk elements changes, the plexus arrangement itself remains the same. Thus, although the sensory fibers derive from an adjacent DRG (either the one above or the one below the “typical” DRG), the pattern of NCS and NEE abnormalities would localize to the same BP element. Regarding horizontal variations, Leffert has reported that the trunk elements are seldom anomalous, the MT being a direct extension of the C7 APR in 100%, and the UT and LT being of “classical” formation in >90% and >95%, respectively.

A second limitation of this study is that we often were unable to verify that the BP trunk element identified electrodiagnostically was truly the pathological site of involvement. Neuroimaging studies (which were not performed on all patients) usually were not helpful because they are not sensitive enough to permit lesion identification confined to a single trunk element. Similarly, operative verification that only one BP element was involved was not possible because only a minority of our patients underwent surgical exploration (e.g., the MT case). Yet electromyographers are called upon to assess all BP lesions, regardless of whether or not they are surgically explored. Moreover, even if all patients underwent surgical confirmation, electrodiagnostic evaluation would still be required preoperatively, and thus the dilemma would remain. We, like other authors before us, did the next best thing. We correlated all of our electrodiagnostic impressions with the clinical examinations. In addition to credible histories of a focal BP lesion, all 53 cases had clinical examination features consistent with involvement of the BP element ultimately diagnosed by NEE. The NEE either confirmed the clinical impression or further refined it.

While our brachial plexopathy series represents a biased population (i.e., focal brachial plexopathies), their etiologies were varied: trauma (18), true neurogenic thoracic outlet syndrome (10), post median sternotomy (open heart surgery) (7), neoplastic (4), neuralgic amyotrophy (3), post irradiation treatment (1), iatrogenic (1), neurofibromatosis type I (1), and unknown (8). Of note is that in the 3 patients with neuralgic amyotrophy, both the clinical and NEE features were suggestive of an UT BP lesion and not, as is more often the case, one or more proximal mononeuropathies.

The individual S-NCS and the likely course of their sensory fibers through the BP will next be discussed.

The LABC Response. The lateral antebrachial cutaneous nerve is the terminal portion of the musculocutaneous nerve, derived from the LC of the BP. Consequently, by anatomical definition, the “cord” element traversed by the sensory fibers assessed by the LABC S-NCS is the lateral cord. Thus only LC lesions, but not PC or MC lesions, have the potential to affect the LABC S-NCS at the “cord” level of the BP. With regard to the trunk elements that the LABC fibers traverse, they could traverse the upper trunk, the middle trunk, or both. Since the LABC response was abnormal in 25 of 26 UT lesions, our results suggest that they traverse predominantly the UT. Our study did not adequately assess the MT, since only one MT lesion was identified. However, Inouye and Buchthal recorded spinal nerve potentials evoked by stimulation of the sensory fibers of the musculocutaneous nerve and showed that the maximum amplitude occurred at the C6 root, while Yoss and coworkers have shown that C6, but not C5, radiculopathies cause sensory symptoms in the lateral forearm (i.e., in the sensory distribution of the LABC nerve). These studies support our finding that the predominant course taken through the BP for those sensory fibers assessed by the LABC S-NCS is the LC and the UT. They also suggest that the sensory axons assessed by the LABC SNAP have their cell bodies of origin in the C6 DRG cells. Importantly, the LT element of the BP is not assessed by the LABC sensory response (nor are the MC or PC). Figure 1 illustrates the suggested pathway.

The Med-D1 Response. The median nerve is composed of fibers derived from both the LC and the MC. Because the Med-D1 response was abnormal in 25 of 26 UT lesions, 0 of 1 MT lesion, and 0 of
20 LT lesions, our study suggests that the Med-D1 SNAP is elicited from fibers that traverse the UT (and LC). Whether or not some of the fibers it assesses sometimes traverse the MT could not be determined by this study because only a single MT lesion was identified. Of importance is that the LT, MC, and PC elements of the BP are not assessed by the Med-D1 sensory response. Figure 2 illustrates the suggested pathway.

The Med-D2 Response. The Med-D2 SNAP was abnormal in 5 of 26 UT lesions, although 3 of 21 “normal” responses were borderline low in amplitude when compared to the contralateral side (see Table 2). The Med-D2 SNAP was abnormal with 0 of 1 MT lesion, but this response was borderline low in amplitude (47%) compared to that found in the contralateral limb (see Table 2). The Med-D2 SNAP was abnormal with 0 of 26 LT lesions. Even though only one MT lesion was available for evaluation (borderline low in amplitude), the absolute lack of involvement of the Med-D2 SNAP with LT lesions coupled with the rather minimal involvement (32% at most, if borderline low amplitudes are included as abnormal) with UT lesions suggests, by default, that the MT is the trunk element most often traversed by the sensory fibers supplying the index finger. However, due to the limited number of MT lesions in our study, no definite conclusions can be drawn. Nonetheless, it is pertinent to note that while we were collecting the 53 isolated trunk element lesions included in this study, we rejected dozens of plexopathies in which the Med-D2 response was abnormal because, on NEE, abnormalities were present outside of the predefined MT muscle domain (i.e., they were UT/MT or MT/LT lesions). Thus, the Med-D2 response assesses the UT in a minority of patients,
presumably the MT in most patients, and the LC in all patients. Importantly, the LT (along with the MC and the PC) element is not assessed by the Med-D2 response. Figure 3 illustrates the suggested pathway.

The Med-D3 Response. The Med-D3 SNAP was abnormal in 2 of 26 UT lesions, 1 of 1 MT lesion, and 3 of 23 LT lesions (2 of the 20 “normal” with LT lesions were borderline low in amplitude, 44% and 47%, compared to the other side) (see Table 2). These findings suggest that the sensory fibers supplying the middle finger can traverse the UT, MT, and/or LT elements. Because our study showed that the Med-D3 response was seldom affected with isolated UT lesions, it is probable that the sensory axons subserving this response derive primarily from the C7 DRG and therefore traverse the MT. However, because only one isolated MT lesion was included in this study, no definite conclusions are possible. Nonetheless, analogous to the circumstances surrounding the Med-D2 response, we found that the Med-D3 response was typically abnormal with combined UT and MT brachial plexopathies, as well as with combined MT and LT lesions. This again suggested that the MT is the predominant trunk element traversed by the sensory fibers contributing to the Med-D3 SNAP. The major difference between the Med-D2 and the Med-D3 responses was that the latter was abnormal with 13% of the LT lesions, revealing, contrary to past beliefs, that the median sensory axons contributing to the Med-D3 SNAP sometimes pass through the MC and the LT elements of the BP on their way to their DRG cell bodies of origin. The suggested pathways are shown in Figure 4.

The Radial Responses. The radial sensory response was abnormal with 15 of 26 (58%) lesions involving the UT, 0 of 1 affecting the MT, and 0 of 26 involving the LT. As with the Med-D2 and Med-D3 responses, accurately determining the MT contribution was not possible, because only 1 MT lesion was identified. However, the fact that the radial SNAP was abnormal in only 58% of UT lesions suggests that this is not the only trunk element these fibers traverse. Moreover, the fact that the radial SNAP was normal in all 26 LT lesions indicates that the LT is not the additional trunk element traversed. By default, these results suggest that the MT serves as an important conduit for radial sensory fibers approximately 42% of the time. Supporting this concept is that the radial SNAP frequently was abnormal both with combined UT/MT lesions and with combined MT/LT lesions, two categories of BP lesions not included in this study. This concept is also supported by the work of Inouye and Buchthal,11 who showed that the maximum amplitude response with radial nerve stimulation occurred at the C6 and C7 roots, suggesting that the UT and MT function as pathways for these fibers. Thus, the radial sensory fibers appear to traverse both the UT and the MT (the particular pathway varying from patient to patient) as well as the PC. Importantly, the radial sensory fibers do not traverse the LT, MC, or LC. Figure 5 depicts the suggested pathways.

The Uln-D5 and DUC Responses. By anatomic definition, the sensory fibers contributing to the Uln-D5 and the DUC SNAPs must traverse the MC and the LT BP elements. Thus, it is not surprising that the Uln-D5 SNAP was abnormal in 25 of 26 LT
lesions, with the only “normal” response showing a borderline amplitude decrement compared to the other side. The DUC SNAP was abnormal in 22 of 23 LT lesions. Thus, our results confirm the undisputed fact that the Uln-D5 and DUC SNAPs evaluate the MC and LT elements of the BP; they do not assess the UT, MT, LC, or PC.

We did not perform a DUC S-NCS on any of our UT patients, because the sensory fibers subserving this response are known not to traverse the UT, and the studies, as is, were already quite time-consuming. Moreover, as these data show, the DUC S-NCS response was always abnormal whenever the Uln-D5 S-NCS response was abnormal; and we did perform an Uln-D5 S-NCS in all 53 of these patients (and thus in all 26 of the UT lesions). As suspected, it was never involved.

The MABC Response. The medial antebrachial cutaneous nerve originates from the MC, which is continuous with the LT. By anatomical definition, the MABC SNAP should assess fibers that traverse the LT element of the BP. Our study confirmed this, showing abnormal MABC SNAPs in 11 of 17 LT lesions. However, a pertinent question arises: “Why were only two thirds of the MABC sensory responses affected by the LT lesions if this is the only trunk element traversed by these sensory fibers?” First, it is important to note that all the LT plexopathies in which the normal MABC response occurred had the same etiology: postmedian sternotomy. These particular LT plexopathies (i.e., those associated with median sternotomy) differ from most other LT lesions in that they consistently affect the ulnar motor and sensory fibers disproportionately more than they affect the C8/T1 median motor fibers and the MABC fibers. We believe this occurs because these lesions actually involve primarily the C8 APR rather than the LT itself. Conversely, we believe that the lesion char-
characteristic of true neurogenic thoracic outlet syndrome (TN-TOS) actually involves primarily the T1 APR rather than the LT. Both Maggiano et al. and Nishida et al., in separate reports dealing almost exclusively with TN-TOS, have reported consistently finding MABC response abnormalities with these lesions. The operative results Gilliatt reported (34 patients) are also consistent with this conclusion; he noted that usually the C8 and T1 APR crossed the congenital taut band (extending from the tip of the rudimentary cervical rib to the first thoracic rib) and that the T1 APR appeared to be more affected. With TN-TOS the electrodiagnostic findings are typically the converse of those found with postmedian sternotomy: the median motor NCS and the MABC NCS are severely involved, while the ulnar sensory NCS, and particularly the ulnar motor NCS, are less affected. Thus in TN-TOS, the ulnar sensory NCS response, while absolutely or relatively low in amplitude, is rarely unelicitable, whereas the MABC response is typically unelicitable. We did not perform a MABC S-NCS in any of the UT cases because it would be anatomically impossible for these fibers to traverse that element of the BP.

CONCLUSIONS

A number of conclusions regarding both the anatomy of the BP and the optimal method for assessing it with S-NCS can be derived from this study.

Regarding anatomy, some previously held concepts apparently are incorrect regarding the various BP elements traversed by the median sensory fibers supplying the digits. First, the index finger digital nerves seldom derive from the UT. By default, it appears that they usually originate from the C7 DRG cells, and pass through the MT to the LC, rather than arising from the C6 DRG and traversing the UT to the LC. Second, probably not all the median digital nerve fibers traverse the lateral cord. The fact that the Med-D3 SNAP occasionally (13%) was abnormal with LT lesions, suggests that the middle finger is sometimes supplied by median sensory fibers derived from the C8 DRG, via the LT and MC elements of the BP.

Regarding the optimal use of the S-NCS for assessing brachial plexopathies, we conclude the following:

1. With possible UT lesions, the routine Med-D2 study is inadequate. Either the LABC SNAP, the Med-D1 SNAP, or both, should be performed. In our EMG laboratory, we usually perform a combination of motor and sensory NCS (our “UT package”) consisting of the LABC sensory, the Med-D1 sensory, the musculocutaneous motor (recording biceps), and the axillary motor (recording deltoide) studies. Our routine assessment also includes the radial SNAP, which may also be helpful in approximately 58% of UT lesions.
2. With possible MT lesions, the Med-D2 and the Med-D3 S-NCS appear to be optimal; although the radial S-NCS may also be abnormal (42%).
3. With possible LT or MC lesions only one ulnar S-NCS, Uln-D5 or DUC, needs to be

![FIGURE 6. Illustration of the incidence of S-NCS involvement for the supraclavicular brachial plexus elements.](image-url)
performed since the axons assessed by both traverse identical BP elements and therefore yield identical results. Except for lesions resulting from median sternotomy, the MABC S-NCS is also an excellent S-NCS for assessing these BP elements. In our EMG laboratory, we usually perform a combination of S-NCS and M-NCS when assessing patients with possible LT/MC lesions (our “LT package”) consisting of the following: Uln-D5, MABC, median motor (recording APB), and ulnar motor (recording ADM and frequently FDI as well). We have recently omitted the DUC response because, in this study, its results so closely paralleled the results of the Uln-D5 response.

4. Although the Med-D4 sensory response was not utilized in this study, it may be useful for demonstrating LT brachial plexopathies. Conceivably, it could be very helpful in differentiating LT lesions from ulnar nerve lesions in the postmedian sternotomy patients with LT plexopathies predominantly affecting ulnar nerve fibers. This is the population of LT lesions in which the MABC response is notoriously spared, probably because the lesion actually involves the C8 APR.

5. With possible LC lesions, the LABC, Med-D1, Med-D2, and usually the Med-D3 responses should be affected while the radial response should always be unaffected.

Thus, like the muscle domains of the individual BP elements, there exist S-NCS domains for each of the BP elements (see Fig. 6). Although there also exist M-NCS domains for each of the BP elements, they are not as helpful for localization due to the limited number of M-NCS available and to their considerable overlap. We find M-NCS to be more useful in assessing the severity of the lesion (a direct reflection of their amplitude decrements).

REFERENCES

31. Wilbourn AJ: Iatrogenic brachial plexopathies: Clinical

Machine settings

Sensory

Sensitivity 20 uV
Time base 2 ms per division
Filters 20 Hz/2kHz or 3kHz

Motors

Sensitivity 5 mV
Time base 2 ms per division
Filters 2 Hz/10kHz

F-waves
UE 500 uV sensitivity 5ms time base
LE 500 uV sensitivity 10ms time base

Needle

Filters 20 Hz/10 kHz
Begin at 50 uV to look at insert ional activity